Options
Estimation and Application of Fully Parametric Multifactor Quantile Regression with Dynamic Coefficients
Series
School of Finance Working Paper Series
Type
working paper
Date Issued
2016-03-03
Author(s)
Abstract (De)
This paper develops and applies a novel estimation procedure for quantile regressions with time-varying coefficients based on a fully parametric, multifactor specification. The algorithm recursively filters the multifactor dynamic coefficients with a Kalman filter and parameters are estimated by maximum likelihood. The likelihood function is built on the Skewed-Laplace assumption. In order to eliminate the non-differentiability of the likelihood function, it is reformulated into a non-linear optimisation problem with constraints. A relaxed problem is obtained by moving the constraints into the objective, which is then solved numerically with the Augmented Lagrangian Method. In the context of an application to electricity prices, the results show the importance of modelling the time-varying features and the explicit multi-factor representation of the latent coefficients is consistent with an intuitive understanding of the complex price formation processes involving fundamentals, policy instruments and participant conduct.
Language
English
HSG Classification
contribution to scientific community
Publisher
SoF - HSG
Publisher place
St. Gallen
Volume
2016
Number
7
Pages
28
Subject(s)
Contact Email Address
florentina.paraschiv@unisg.ch
Eprints ID
247892
File(s)
Loading...
open access
Name
16_07_Paraschiv et al_Estimation and Application of Fully Parametric Multifactor Quantile Regression.pdf
Size
1.02 MB
Format
Adobe PDF
Checksum (MD5)
9776f5f05cba22372cb627e8190d7058