Personality Research and Assessment in the Era of Machine Learning
Journal
European Journal of Personality
Type
journal article
Date Issued
2020
Author(s)
Abstract
The increasing availability of high–dimensional, fine–grained data about human behaviour, gathered from mobile sensing studies and in the form of digital footprints, is poised to drastically alter the way personality psychologists perform research and undertake personality assessment. These new kinds and quantities of data raise important questions about how to analyse the data and interpret the results appropriately. Machine learning models are well suited to these kinds of data, allowing researchers to model highly complex relationships and to evaluate the generalizability and robustness of their results using resampling methods. The correct usage of machine learning models requires specialized methodological training that considers issues specific to this type of modelling. Here, we first provide a brief overview of past studies using machine learning in personality psychology. Second, we illustrate the main challenges that researchers face when building, interpreting, and validating machine learning models. Third, we discuss the evaluation of personality scales, derived using machine learning methods. Fourth, we highlight some key issues that arise from the use of latent variables in the modelling process. We conclude with an outlook on the future role of machine learning models in personality research and assessment.
Language
English
Keywords
assessment
interpretability
machine learning
overfitting
personality
Refereed
Yes
Publisher
SAGE
Volume
34
Number
5613
Start page
613
End page
631
Division(s)
Eprints ID
264545
File(s)![Thumbnail Image]()
Loading...
open.access
Name
per.2257.pdf
Size
1.39 MB
Format
Adobe PDF
Checksum (MD5)
8d9280ef52603e19dad55ed7ecf7bdb3