Options
A Taxonomy for Deep Learning in Natural Language Processing
Type
journal article
Date Issued
2021
Author(s)
Abstract (De)
Despite a large number of available techniques around Deep Learning in Natural Language Processing (NLP), no holistic framework exists which supports researchers and practitioners to organise knowledge when designing, comparing and evaluating NLP applications. This paper addresses this lack of a holistic framework by developing a taxonomy for Deep Learning in Natural Language Processing. Based on a systematic literature review as proposed by Webster and Watson [1] and vom Brocke et al. [2] and the iterative taxonomy development process of Nickerson et al. [3] we derived five novel dimensions and 38 characteristics based on a sample of 205 papers. Our research suggests, that a Deep Learning NLP approach can be distinguished by five dimensions which were partly derived from the CRISP-DM methodology: application understanding, data preparation, modeling, learning technique and evaluation. We, therefore, hope to provide guidance and support for researchers and practitioners when using Deep Learning for NLP to design, compare and evaluate NLP applications.
Language
English
HSG Classification
contribution to scientific community
HSG Profile Area
SoM - Business Innovation
Refereed
Yes
Publisher
Hawaii International Conference on System Sciences
Publisher place
Hawaii
Subject(s)
Division(s)
Eprints ID
261504
File(s)
Loading...
open access
Name
A_Taxonomy_for_Deep_Learning_in_Natural_Language_Processing.pdf
Size
2.7 MB
Format
Adobe PDF
Checksum (MD5)
585324f0cc7eeb7a2d37cdf0bb8c2738